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Abstract-In this paper we construct microstructures of multiphase composites with unusual
properties: their heat conductivity in one direction is equal to the harmonic or arithmetic mean of
the phases' heat conductivities and the conductivity in an orthogonal direction does not equal either
arithmetic or harmonic mean. Two-dimensional three-phase structures are studied, but the results
can be easily generalized for the three-dimensional composites with arbitrary number of phases.
Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

The paper is concerned with the structures of multicomponent composites with extremal
effective properties. To explain what the "extremal" properties are we use the concept of
the Gm-closure set. The Gm-closure is the set of the effective properties tensors of all mixtures
(composites) that can be assembled from the given amounts of the given materials. For the
heat conductivity problem, each effective conductivity tensor is determined by its eig
envalues (principal heat conductivities) (AJ, A2, ... ,), and the Gm-closure is presented as a
set of these vectors. The Gm-closure set is definitely bounded; its boundary corresponds to
the composites with extremal properties. Now we call "extremal" the composite structures
which correspond to the boundary of the Gm-closure.

For the two-dimensional heat conductivity problem, one can visualize the Gm closure
as a two-dimensional domain in the space of eigenvalues of effective heat conductivity
tensors. The boundary points of Gm-closure possess extremal overall properties. Therefore
we call them "extremal points", and corresponding structures are called "extremal struc
tures".

The Gm-closure problem has attracted a lot of attention in recent years. The most
complete results have been obtained for two-phase composites. Namely, the problem for
the heat conducting materials has been completely solved for the mixtures of two isotropic
phases, which means that all structures with extremal properties have been determined.
The isotropic component of the Gm-closure has been obtained by Hashin and Shtrikman
(1962) ; the full set of anisotropic composites has been found by Lurie and Cherkaev (1984b,
1986), and Tartar (1985). The set of all pairs ofelectrical and magnetic permeability tensors
of two-dimensional two-phase composites has been determined by Cherkaev and Gibiansky
(1992) [the isotropic component of this set has been described earlier by Milton (1981a,b)].
Here the coupling effect has been detected. Bounds on the complex conductivity of an
isotropic two-dimensional composite have been obtained by Milton (1981a).

In elasticity, Hashin and Shtrikman have found the smallest rectangle in the bulk
shear moduli plane that contains the isotropic component of the Gm-closure for a two
phase composite. Milton and Phan-Thien (1982) and Cherkaev and Gibiansky (1993) have
described a smaller set inside of this rectangle which represents more restrictive coupled
bounds on the effective elastic moduli. The viscoelasticity problem has been studied by
Gibiansky and Milton (1993), etc.
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Most of the previously mentioned results have been obtained by using variational
techniques (the Hashin-Shtrikman method, the Translation Method or their modifications)
for constructing geometrically independent bounds for composite properties. These
inequalities restrict the Gm-c1osure from outside. The optimality of the bounds has been
proved by consideration of the special classes of microstructures which allow explicit
calculation of their effective properties. The set of the effective properties of those classes
restricts the Gm-c1osure from inside. When these two sets coincide, the complete description
of the Gm-c1osure is achieved.

Relevant results for the multiphase composites are much weaker; there exists a gap
between the already obtained bounds and the set of the properties of the known classes of
microstructures. We mention here some papers where the reader can find results and further
references: the bounds for the conductivity of isotropic multiphase mixtures have been
found by Hashin and Shtrikman (1962), attainability of the Hashin-Shtrikman bounds has
been studied by Milton (1981c) and by Kohn and Milton (1988). Microstructures of optimal
isotropic conductors have been studied by Lurie and Cherkaev (1985). Bounds on the
effective properties of an anisotropic multiphase composite have been found by Zhikov
(1986). The most complete analyses of the bounds and their attainability for the anisotropic
mixtures can be found in the paper by Kohn and Milton (1988). The complex conductivity
case has been studied by Golden and Papanicolaou (1985) and Milton and Golden (1990).
Some bounds for the complex conductivity of multiphase composites have been given by
Golden (1986) and by Milton (1987). Recent progress in the problem has been achieved by
Nesi (1994). He has obtained a set ofgeometrically independent bounds on the conductivity
of multiphase two-dimensional composites that improve upon the Hashin-Shtrikman
results. The idea of his approach is close to the translation method. It is based on exploiting
the special regularity properties of the solution of the conductivity equations in two dimen
sions that have been proved in the same paper.

However, in spite of numerous efforts, even the simplest problem of the exact bounds
on the effective conductivity of a two-dimensional composite made of three isotropic
materials is still mainly open: the gap between the bounds and the set of the known
structures still exists.

In the present paper we consider one part of this problem: we explicitly construct
anisotropic heat conducting structures (special laminates) which possess the extremal value
of one of the principal heat conductivities. Therefore, these structures are certainly optimal:
they belong to the boundary of the Gm-c1osure. Suggested structures correspond to the
boundary points; the existence of these structures proves that the boundary component is
exact.

Also we formulate some rules of assembling extremal mixtures. The construction of
the microstructures exploits the idea of an "imitation" that was suggested by Schulgasser
(1976) and then used by Milton (l981c, 1987), and by Lurie and Cherkaev (1985).

For the sake of brevity we restrict ourselves in this paper to the particular case of
a three-phase two-dimensional heat conducting composite. We focus our attention on
composites with extremal value of one of the principal conductivities (they clearly form a
component of the Gm-c1osure boundary) and we compare extremal two- and three-phases
mixtures. Two-phase mixtures in two dimensions possess the following property: if the
heat conductivity of the composite in some direction is equal to the harmonic or the
arithmetic mean, then the conductivity in an orthogonal direction is equal to the arithmetic
or the harmonic mean, respectively. Surprisingly, this is not true for multicomponent
mixtures. We construct the heat conducting multiphase composites of a special structure
with the following properties: the conductivity in one direction is extreme and equal to the
harmonic mean of the phases' conductivities while the conductivity in an orthogonal
direction is less than an arithmetic mean!

Although we consider the simplest problem, the results obtained have more general
significance. First of all, they can be immediately applied to the anti-plane strain problem
which is formally identical to the heat conductivity problem in two dimensions (the equa
tions of these problems coincide if the heat conductivities are replaced by the inverse shear
moduli, and the temperature is replaced by the stress potential). Also, the plane elasticity
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problem for materials with equal bulk moduli can be reduced to the problem discussed
here, see Lurie and Cherkaev (l984a) for details. But even more important here seems to
be a demonstration of principles of construction of optimal geometries for multicomponent
composites. These principles are definitely not limited to the considered example but are
applicable to any multicomponent mixture. The optimal structures that we have found
have no analogues for two-component mixtures.

The plan of the paper is the following: in Section 2 we give the statement of the
problem, Section 3 summarizes known results, Section 4 contains the main results of the
paper, namely, the description of extremal microstructures that form a component of the
Gin-closure boundary.

2. STATEMENT OF THE PROBLEM

Consider a three-phase heat conducting composite with periodic structure. Suppose
that each cell of periodicity is divided into three parts OJ, 0b and 0 3 that have relative
volume fractions m[, m2 , and m3 , m, +m2 +m3 = 1. Suppose now that these parts are filled
by three isotropic heat conducting materials with specific heat conductivities K[, Kb K3'
Assume also that

The heat conductivity in this heterogeneous material is described by the Fourier law:

q(x) = K(x)e(x),

where

r if XEOI

K(X) = K2, if XE02

K3, if XE0 3

q(X) and e(x) are the heat flux and temperature gradient, respectively, i.e.

divq = 0, e(x) = 'IT.

Homogenization of the heat conductivity in such a media leads to the relationship

(1)

(2)

(3)

(4)

(5)

where <.) denotes averaging over the periodic cell, "* is the effective heat conductivity
tensor. This tensor "* depends on the conductivity constants K i of the phases, on their
volume fractions mi in the mixture, and on the microstructure.

The tensor "* (which is second order, possibly anisotropic, symmetric, and positive
definite) is characterized by its eigenvalues A[ and )'2 and the eigenvectors (these have no
importance for us). It has the representation:

(6)

in the basis associated with the eigenvectors of this tensor. The eigenvalues AI and A2 are
bounded by the arithmetic and harmonic means of the components conductivities, i.e.

(7)

where
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(8)

These bounds are known and were proved by Wiener (1912) [see also Christensen (1979)].
We call them arithmetic-harmonic mean (ARM) bounds because they bound the effective
heat conductivity by the harmonic or arithmetic means of the components' conductivities.
The set of the pairs ()." Az) that satisfy the bounds (7) is represented by a square in the }'I

Az plane. We call it ARM square. The ARM bounds are optimal in the following sense:
they describe the minimal rectangle in the plane ArA,z which contains the Gm-c1osure set.
To demonstrate this, consider a laminate structure which represents a point of the Gm 

closure. One of the eigenvalues of the effective conductivity tensor of the laminates (the
one that describes the conductivity in the direction n across the laminates) is equal to the
harmonic mean of the components conductivities:

(9)

The other one, corresponding to the conductivity in the direction t along the laminates, is
equal to the arithmetic mean of the components conductivities:

(10)

This shows that two symmetric corners (Kh' Ka) and (Ka, Kh) of the ARM square correspond
to the laminate structure and that the ARM square is the minimal one, indeed.

Remark. The simple rules (9) and (10) for calculation of the effective conductivity of the
laminates are the key (and the only one!) tool of our analyses. We call them harmonic and
arithmetic mean rules, respectively. Note, that they are valid also for a laminate of aniso
tropic phases if the direction of lamination coincides with one of the principal axes of the
phase's conductivity tensors.

There is a natural physical explanation of the laminate's extremal properties. If one
applies an external temperature gradient e along the layers then the local field e(x) in the
laminates takes the same value in each point of the structure:

and

e(x) = const. (x) = e.

q(x) = K(x)e.

(11)

(12)

Therefore the effective conductivity along the laminates [which relates <e(x) and <q(x)]
is given by the arithmetic mean rule (as for the conductivity of conductors in parallel), i.e.

<q(x» = <K(x)e) = <K(x)e. (13)

Similarly, the external heat flux applied across the layers causes the constant local heat
flux q(x) = const.(x) = q. Then the effective conductivity across the laminates is given by
the harmonic mean rule (as for the conductivity of conductors in series) :

<e(x) = \K/>;))q. (14)

We are interesting to find extremal composites that correspond to the bounds of the
ARM square.
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Fig. I. Gm-closure set for the two-phase two-dimensional problem. Square ABeD corresponds to
the AHM bounds.

3. KNOWN BOUNDS

3.1. Gm-closure for the two-phase composite
The Gm-closure set for the two-component mixtures was found by Lurie and Cherkaev

(1984b, 1986) and Tartar (1985). In particular, in two-dimensional space it is described by
the following inequalities:

(15)

(16)

and is illustrated in Fig. 1. [The previously mentioned Hashin and Shtrikman (1962)
bounds on the effective conductivity of a two-phase isotropic composite coincide with the
inequalities (15) and (16) restricted to the case Al = A2]. These bounds are optimal in a
sense that they correspond to special microstructures, see Lurie and Cherkaev (1984b) and
Tartar (1985).

One can see that the Gm-closure set is smaller than the AHM square. Only the corner
point B = (Kh' Ka) and the symmetric point D = (Ka , Kh) correspond to structures. The only
structure which belongs to the boundary of the AHM square is the laminate (we recall that
the conductivity along the laminates is equal to K a and the conductivity across them is equal
to Kh)'

The slopes of the boundary curves (15) and (16) are strictly negative and finite. This
implies, in particular, that the arithmetic mean rule for the effective conductivity in any
direction implies the harmonic mean rule for the effective conductivity in the orthogonal
direction and vice versa. This observation corresponds to the fact that an increase of the
maximal possible conductivity of the extremal mixture in one direction necessarily leads to
a decrease of the conductivity in the orthogonal direction and vice versa. It is surprising
that the last conclusion is not true for the multiphase mixtures. In this work we present the
microstructures that correspond to some other (not corner) points on the boundary of the
AHM square for the three-phase mixture.
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3.2. Trace bounds for the multiphase composite
Bounds on the effective conductivity of an isotropic multiphase composite have been

found by Hashin and Shtrikman (1962).
Namely, they found that the effective conductivity K* of such a mixture is restricted

by the inequalities

where (for the two-dimensional three-phase problem)

(17)

U [3 m; J-1
K = I-- -K3 ·

;~IK;+K3
(18)

However, the attainability of the bounds for multicomponent structures is subject to
some additional constraints. Namely, the lower bound (17) is exact and corresponds to
some composite if K

L
:( K2, whereas the upper bound (17) is attainable if K

U
~ K2, [see

Milton (1981c) and Lurie and Cherkaev (1985)].
An anisotropic version of the Hashin-Shtrikman bounds has been obtained by Zhikov

(1986) and Kohn and Milton (1988) who called them trace bounds. They have the form:

(19)

(20)

The point (J." ,12) on the lower bound (19) is known to be attainable if

(21 )

where Amax = max {J." )'2} and Amin = min {J." A2} ; the point (AI, )'2) on the upper bound
(20) is attainable if

(22)

[see Kohn and Milton (1988)].
Figure 2 shows the 1.1-,12 plane where we draw the trace bounds (19) and (20) and

mark the points (K
L

, K
L

) and (K
U

, K
U

) of the Hashin-Shtrikman bounds for the following
values of parameters:

KI = 1, K2 = 5, K3 = 25, mj = 0.6, m2 = 0.2, m 3 = 0.2. (23)

The points on the bold part of the lower bound satisfy conditions (21) and, therefore, are
attainable by some microstructures. At the same time one can check that conditions (22)
(for the upper bound) are never satisfied for the chosen values of the parameters, therefore
the attainability of this bound is not established.

It should be noted, that bounds (19) and (20) are definitely not exact in the sense that
they cannot be achieved for all values of the parameters K" K2' K3' mj, m2, m3' For example,
the lower bound does not satisfy natural limiting requirement

(24)

Here Gm(K" K2> mj, m2) is the set of the pairs (J." ,12) satisfying inequalities (15) and (16),
and Gm(Kj, K2, K3, ml, m2, m3) is the set of the pairs (A" A2) that satisfy bounds (19) and
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Fig. 2. Bounds on the Gm-closure set for the three-phase two-dimensional problem. The bold part
of the lower bound EH is known to be attainable. In the scale of the figure, the points E, F, G, H
(that mark the intersections of bounds (19) and (20) with the boundary of the AHM square ABeD)

are indistinguishable from the points that correspond to the structures that we found.

(20). In other words, the established lower bound of the Gm-closure does significantly
depend on K[, even if the volume fraction of K, tends to zero. When the volume fraction
reaches zero, the inequality has a discontinuity: this contradicts the expected continuous
dependence of the bounds on the volume fractions.

Remark. Note that the new bounds recently suggested by Nesi (1994) satisfy equalities of
the type (24). They are more restrictive than the Hashin-Shtrikman bounds although the
attainability of these bounds is also not stated.

The curves given by bounds (19) and (20) do not pass through the corner points of
the AHM square (unlike the two-component case) ; instead they pass through the points
on the sides of this square (points E, F, G, H in Fig. 2). It is important to emphasize that
these bounds do not forbid the existence of the composites corresponding to the points on
the sides of the AHM square. In the next section we demonstrate such structures.

4. COMPOSITE STRUCTURES WITH EXTREMAL PROPERTIES

In this section we find structures with one of their principal conductivities equal to the
arithmetic mean bounds, Al = K a , while the other one is bigger than the harmonic mean,
A2 ~ Kh' These structures correspond to points on the intervals DG and BF on the side of
the AHM square, see Fig. 2. Then by using similar arguments we find structures with
Al = Kh, A2 ~ K a which correspond to points on the intervals BE and DH, see Fig. 2.

4.1. Structures that support constant temperature gradient
Let us begin with structures with principle conductivity in the direction XI equal to the

arithmetic mean of the phase's conductivities. These structures must support a constant
temperature gradient when exposed to an external field directed along x, axis: it guarantees
the equality Al = K a , see eqn (12). On the other hand, they should not be able to support a
constant heat flux in the orthogonal direction x 2 • The last condition means that conductivity
in the X 2 direction should not be equal to the harmonic mean, i.e. A2 ~ Kh'

We construct the structure that consists of three sequential laminations in the following
order.
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Fig. 3. Schematic picture of our three-step process for creating optimal microstructures.

(I) First, we mix some amounts of the first and the third materials in proportions p
and l-p in the laminates parallel to the axis XI' see Fig. 3(a). We choose the proportionp
so that the conductivity of this laminate in the direction X I equals the conductivity of the
intermediate material K2, i.e.

(25)

Here and below, the lower index in the notation A~k) shows the direction, the upper index
denotes the rank of the lamination. The required proportion p is equal to :

(26)

The other eigenvalue A&l) (in the direction X2 across the laminates) is given by the
harmonic mean rule and is equal to

(27)

(2) At the second step we use the idea of imitation. We treat the previously obtained
mixture as a new homogeneous material and mix it with the total amount available m2 of
the material K2 in the laminates parallel to the axis X2, see Fig. 3(b). We assume that the
scale of the second lamination is much larger than the scale of the lamination at the first
step.

Let us calculate the properties of the resulting composite. Both components have the
same properties K2 and A\l) = K2 in the direction Xl' Therefore, the conductivity ).\2) in the
direction Xl (given by the harmonic mean rule) is equal to K2' i.e.
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Here Jl is the amount of the mixture of the first and third materials prepared at the first
step of the process. We could say also that A\2) is equal to the arithmetic mean of the
component's conductivities l\l) and K2 (indeed, the arithmetic and the harmonic means of
equal quantities trivially coincide!) :

(29)

The conductivity of the mixture in the other direction X2 is equal to the arithmetic
mean of the component's conductivities AS')and K2 and is given by the lamination formula:

(30)

This step is the key point of the construction. Indeed, we obtain the composite with
effective properties in all directions equal to the arithmetic mean of the properties of the
component's that enter the process at the second step. We have achieved this by a special
choice of the intermediate material prepared at the first step. This material "imitates" the
material K2 with respect to the conductivity in the direction x I and guarantees the arithmetic
rule averaging (instead of the expected harmonic mean averaging) for the conductivity
across the laminates. We follow here the idea exploited by Schulgasser (1976) for a three
dimensional polycrystal structure. This idea has been used also by Milton (198lc) and by
Lurie and Cherkaev (1985) for multiphase isotropic structures. They have considered
isotropic mixtures that imitate the intermediate material K2 with respect to the properties
in all directions.

Remark. Let us comment on the properties of the structure in terms of the applied fields.
If one applies an external temperature gradient in the direction Xl' the local field is constant
throughout the composite because the properties of both components in this direction are
equal to ,1\1) = K2, according to (28). Therefore, the conductivity ,1\2) of this structure in
the direction x 1 is equal to K2' On the other hand, if one applies the external temperature
gradient in the direction X 2, the heat flux is not constant and the conductivity of the mixture
in that direction is different from the harmonic mean value Kh' Indeed, the conductivities
(in the direction X2) of the materials that are mixed at the second step differ, i.e. A~') ¥ K2 .

(3) To finish the construction let us laminate the already obtained amount

(31)

of the described composite with the remaining amounts

(32)

of the first and the third materials, respectively. Now, we orient the lamination along the
XI axis, see Fig. 3(c). Again, we assume that the scale of the third rank lamination is much
larger than the scale of the lamination at the second step of the process.

Applying the arithmetic and harmonic mean rules we find that the conductivity ,1\3) of
this mixture in the direction x I is equal to

(33)

One can substitute A\2) = K2 and the values of the concentrations VI, V2, V3 into eqn (33) and
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check that the resulting conductivity is given by the arithmetic mean of the initial com
ponents:

(34)

[see eqns (29), (31) and (32)]. It is clear because this value is a result of three sequential
arithmetic averagings. Physically, the external temperature gradient applied to the described
composite along the Xl axis causes the constant local field. This implies the equality (34).

The other principal conductivity is equal to

(35)

This value is equal to the harmonic mean Kh only if fl = 0, otherwise it lies between Kh and
K a . Therefore, we obtain the composite that corresponds to some point of the side of the
AHM square but not to its corners.

The effective conductivity of the obtained mixture depends on the amount fl of the
material involved at the first step of the process. More exactly, the eigenvalue A\3) = Ka of
the conductivity tensor is independent of fl but the other eigenvalue W) depends on it. One
can check that A~3) (fl) monotonically increases as fl increases. By changing fl one obtains
an interval of the attainable points on the side of the AHM square. The value fl = 0
corresponds to the simple laminate composite, i.e. to the corner points B = (Kh, Ka) or
D = (Ka, Kh) of the AHM square. The maximal value flmax corresponds to the other end of
the interval.

The maximum amount fl allowed by this construction is equal to

(36)

[see eqn (32)]. Indeed, if

(37)

or, equivalently,

(38)

then fl is restricted by the available amount m, of the first phase. If, on the contrary,

(39)

then the value fl is restricted by the available amount m 3 of the third phase.
The structures corresponding to these two different limiting cases

(40)
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a) b)

and

Fig. 4. Schematic picture of the extremal microstructures corresponding to the points E, F, G, or
H. Part a (b) corresponds to the higher (lower) volume fraction of the third phase.

(41)

are shown schematically in Figs 4(a, b), respectively. The maximum value of the effective
conductivity A~3) is equal to

A = ,;.0) = {A~3\11') if eqn (38) holds,
max 2 (.umax) W) (.u") ifeqn (39) holds.

(42)

In summary, we have found the composites corresponding to any point of the intervals

(43)

on the boundary of the AHM square.

4.2. Structures that support constant heat flux
In this section we describe the composites with the principal heat conductivity in the

direction X 2 equal to the harmonic mean Kh: A2 = Kh'

Consider the same three-steps lamination procedure. At the first step we laminate the
first and the third materials. We choose the fraction p so that the conductivity ~~l) across
the layers is equal to K2, i.e.

(44)

[compare with eqn (25)]. This proportion is equal to:

(45)

[compare with eqn (26)]. The other principal conductivity ~\l) is given by the arithmetic
mean rule

(46)

Now at the second step both components possess the same properties K2 and
j~l) = K2 in the direction X2' Therefore, the conductivity ~~2) in this direction equals 1(2'

Again, the arithmetic and harmonic means of the equal quantities X~l) = 1(2 and 1(2 trivially
coincide. The conductivity of the mixture in the other direction x 1 is equal to the harmonic
mean of the component's conductivities ~\l) and 1(2 given by the lamination formula:
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(47)

Here {1 is the amount of the mixture of the first and the third materials prepared at the first
step of the process. As we see, at the second step of this procedure we obtain a composite
with effective properties in all directions equal to the harmonic mean of the conductivities
of the components that enter the process at the second step. The intermediate material
prepared at the first step "imitates" the material K2 with respect to the conductivity in the
direction X2'

To finish the construction we laminate the obtained amount V2 = {1+m 2 of the
described composite with the remaining amounts VI = ml - jJ{1, and V3 = m3 - (1- jJ){1 of
the first and the third materials, respectively. Applying the harmonic mean rule we obtain
the conductivity ~}3) of this mixture in the direction X2 as

(48)

The other principal conductivity is equal to

(49)

This value is generally less than the arithmetic mean K a (they coincide only if (1 = 0).
Therefore, we have constructed a composite that corresponds to the point on the other side
of the boundary of the AHM square.

Again, the effective heat conductivity 2\3) depends on the amount (1 of the material
prepared at the first step of the process. One can check, that 2\3) ({1) monotonically decreases
as {1 increases. The value {1 = 0 corresponds to the simple laminate composite, i.e. to the
corner point B = (Kh, K a) or B = (K., Kh) of the AHM square. As in the previous section one
can check that the maximum amount (1 allowed by the available resources is equal to

(50)

[compare with eqn (36)]. The minimum value of the effective conductivity 5.\3) is equal to

(51)

In summary, we have found the composites corresponding to any point of the intervals

(52)

on the sides of the AHM square.

5. DISCUSSION

The composites obtained may cover a significant part of the boundary of the AHM
square. For example, consider the case when K3 is infinitely large (superconducting phase).
Then K a = 00 and this square also becomes infinitely large:
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(53)

The obtained structures cover semi-infinite intervals (52) on the sides of the AHM square
if, in addition, ).min ~ oc; or, equivalently,

(54)

Indeed, one can check that in this case the extremal structure with the eigenvalues Al = K a ,

A2 = Jmin that we have found possesses finite conductivities in both directions; intervals
(52) are semi-infinite.

We calculate the heat conductivities of the extremal composites for the parameters
given by eqn (23) and mark them on Fig. 2. In the scale of Fig. 2 the points corresponding
to the optimal microstructures virtually coincide with the points E, F, G, and H of the trace
bounds. It is not always so. Figure 5 illustrates the different situation when

K] = 1, K 2 = 5, K3 = 25, mj = 0.004, m2 = 0.4, m3 = 0.596. (55)

For these parameters the attainability conditions (22) are satisfied for the most part of the
upper bound (bold line on Fig. 5), the microstructures that we found lie very close to the
trace upper bound. The attainability conditions (21) failed in all the points of the lower
bound. The distance between our structures (points Q and R) and the lower bound (points
E and H) is very large. It is not surprising because the lower bound is expected to be crude
for this choice of parameters [which comes close to realizing the condition of the test (24)).

From numerical experiments we have evidence that if the condition K
L
~ K2 of attain

ability of the isotropic point of the Hashin-Shtrikman lower bound holds, our extremal
structures lie close to the intersection of the lower bounds (19) with the boundary of the
AHM square. The same is true for the upper bound (20) provided the inequality K

U
;::: K2

~ K j =l, Kz=5, m1=0.04, m2=O.4, m
J
=O.596
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Fig. 5. Bounds on the Gm-closure set for the three-phase two-dimensional problem. The bold part
of the upper bound FG is known to be attainable. In the scale of the figure, the points F and G [that
mark the intersections of the upper bound (20) with the boundary of the ANM square ABeD] are
virtually indistinguishable from the points that correspond to the structures that we found. The
points Q and R correspond to the extremal microstructures described in the text. Dashed line
corresponds to the curve ;.,1.2 = A1Qi' 2Q where A1Q and A2Q are the moduli of the point Q. This

corresponds to a polycrystal comprised of grains of material Q.
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holds. Figure 2 shows that our structures can lie close to the trace bound even when this
condition is not met.

We have described here some components of the boundary of the Gm-closure. The
remaining components are still unknown. The Gm-closure is, however, bounded from
outside by inequalities (19) and (20) mentioned above. On the other hand, following an
approach similar to that discussed here, one can consider other special laminate composites
and, at least, bound the Gm-closure from inside. We will not guess here what the extremal
structures are, but clearly the boundary of the set of pairs of their eigenvalues connects the
obtained points, as schematically shown on Fig. 5 by the dashed line. This line represents
the heat conductivity of the polycrystals made of the extremal composite corresponding to
the point Q. [The effective conductivity of any two-dimensional polycrystal has the fixed
value of the product of eigenvalues, see Lurie and Cherkaev (1981).] Note that these
structures are used here because they are simple, not because they are extremal. The optimal
structures for this component are still unknown.

At this point we have not proved that there are no any microgeometries corresponding
to the points in the intervals PQ and PM. This possibility cannot be ruled out based on
our analyses.

The obtained results can be easily generalized for the three-dimensional composite
assembled of more than two phases. Indeed, the same construction (which exploits the
idea of imitation) is directly applicable to the three-dimensional problem. Following the
described scheme, one can obtain anisotropic structures which possess the harmonic mean
conductivity in XI direction, the arithmetic mean conductivity in an orthogonal direction
x 2 , and a conductivity in the third direction X3 which is less than the arithmetic mean but
belongs to the interval (52). These structures correspond to cylindrical geometries with the
cross-section along (x 1, x 3) plane which is identical to the above described two-dimensional
structures (Figs I and 2). Similarly, one can find structures which possess arithmetic mean
heat conductivity in two orthogonal directions, but with the conductivity in the third
direction which belongs to the interval (43). In other words, we are able to show the
attainability of all points of the AHM cube in a neighborhood of the corner points (Aa , Aa,

)'h), (Aa, Ah, A.), and (Ah, Aa , Aa).
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